o

é.’)b Dy) ;7"{’)/_'/‘/
A/-QS/-L°/¢,

/Y2 BB32—

’,,(y’
FINAL REPORT Lfb\‘"

NASA GRANT # NAG5-91

TITLE
Data Management and Language Enhancement for

Generalized Set Theory Computer Language for
Operation of Large Relational Databases

ABSTRACT

This report covers the study of the relational database
implementation in the NASCAD computer program system. The
existing system is primarily used for computer aided design.
Attention is also directed to a hidden-surface algorithm for
final drawing output.

SUBMITTED BY:

Gail T. Finley

Associate Professor

Computer Science Department

University of the District of Columbia

{NASA-CR~-182868) DATA MANAGEMENT AND N88=-23446
LANGUAGE ENHANCEMENT FOR GENERALIZED SE[

THEORY COMPUTER LANGUAGE FOR OPERATION OF

LARGE RELATIONAL DATABASES Final Report Unclas
{District of Columbia Univ.) 48 p CSCL 09B G3/61 0142332

CONTENTS

INTRODUCTION
RELATIONAL DATABASE STUDY

HIDDEN-SURFACE ALGORITHM

APPENDIX:
Computer Code for Hidden-surface Algorithm

BIBLIOGRAPHY

INTRODUCTION

The overall objective of this study is the description of
the development of an interactive computer language to handle
operations on large relational databases. The language contains
features applicable to computer graphics and computer aided
design. Additionally, this 1language 1is extended to contain
commands reflecting the operators of relational algebra to
manipulate relational databases.

At the inception of this study, the existing system at NASA,
called NASCAD, was complete for primitive graphic commands, for
numeric data, and for macros to create more complex graphics.
Some work was also complete for creating the relational database.
This study, therefore, extends the relational system with
additional manipulation commands. |

Initial proposals also investigated alternate data

structures -- especially some hierarchical structure such as the
B-tree. The existing data structure, a roving first fit, was
considered adequate 1in the virtual memory environment; it

remained undisturbed.

This report also addresses a hidden-surface algorithm to
manipulate the final output of a graphic system -- the drawing.
The hidden-surface algorithm has as 1its objective the removal
(from the picture) of surfaces that are not visible when viewed

from the planned perspective.

RELATIONAL DATABASE STUDY

Relational Systems

The relational database system derives its theory from the
mathematical theory of relations (relational algebra and
relational calculus). The term relation is derived as follows.
Given the sets Di, D2, ... Dn (not mutually distinct), R is a
relation on these sets 1if it 1is a set of ordered n-tuples <d1,
d2, ..., dn> such that d1 belongs to D1, d2 belongs to D2, ..,
and dn Dbelongs to Dn, where the sets DI, D2, ... Dn are called
the domains of R. R then is considered a relation of degree n.

In a practical sense, a relational database may be pictured
as interrelated flat files or tables. These files can be easily
represented by the existing notation available in most current
higher level languages, nawmely, the representation of a 2-

dimensional array with rows and columns. Each row is considered

a tuple and each column represents a domain. Restrictive
properties of a relation are: no two rows (tuple) can be
identical; and the order of the rows or columns 1is not

significant.

An example used in standard information processing follows.
This example represents a file of students where each row (tuple)
represents information about a single student, and each column

(domain) represents a particular item of information.

STUDENT RELATION

SS NAME ADDR Z1P MAJOR
542 Adams 125 A St 20005 EE
543 Jones 136 J St 20003 CE
546 Smith 146 K St 20001 CS

The following example would apply to describing a primitive
function in a graphic systemn.

PRIMITIVE RELATION

OPERATION VERTEX1 (V1) VERTEX2 (V2) COLOR
Line X1 Y1 X2 Y2 Red
Line X1 Y11 X22 Y22 Blue
Line X13 Y13 X23 Y23 Red
Line X1 Y1 X23 Y23 Green

Relational algebra 1is a collection of operations on
relations. The select, project, and join operators, along with
others not mentioned here, constitute the relational algebra.
Each operator takes one or two relations as operands and produces
another relation.

The select operator takes an existing relation as an input
and produces a horizontal subset of that relation - namely that
subset of tuples (rows) that satisfy a particular condition
specified in the operator statement. That particular condition
may be a single attribute or a comparison of attributes within a

domain (column). For example: Select lines (defined in tuples)

whose color attribute (defined 1in the domain, Color) 1is red.
This yields a relation that is a collection of lines whose color
attribute is red.

The project operator takes an existing relation as an input
and produces, by contrast, a vertical subset of that relation-
namely the subset of attributes (columns) specified in a
particular order and having any duplicate tuples within the
attribute removed. For example: Consider the previous example
and ,lines expressed as vertices V1, V2, After the select
produces a relation of red lines, then a project operations over
V1 yields a relation showing unique start vertices for all red
lines.

The join operator 1is Dbasically a combination of two
relations over a common domain to yield a new relation, generally
a wider table containing dcomains of both predecessor relations
with the common domain eliminated. For example: Noting the
previous example, consider a join of two relations over the VI
domain. This would yield a relation showing all lines and their
attributes emanating from the same starting vertex (regardless of

other attributes - color, etc.).

Relational Implementation

Modifications were made to the existing NASA program,
NASCAD, to add the commands for the relational operations,
project and join. Initial commands for creating and displaying

relations as we as SELECT for manipulation of tuples were already

in the system.

The project command (PRJCT) manipulates domains yielding all
specified domains in the resulting new relation. Conversely, the
command, UNPRJCT, yields all unspecified domains in the resulting
new relation. UNPRJCT 1is desirable when a relatively small
number of domains are deleted. The user may specify the domain
by name or by number. Domains in the resulting relation are
ordered as they were specified in the command string. Thus,
PRICT may be used to reorder domains.

The join command (JOIN) merges two relations over a
specified domain. The command string provides for definition of
the following: two input relations; a domain (by name or number)
in each input relation; and the resulting relation.
Theoretically the name of the key domain in each input relation
should be the same. However, for flexibility, provision is made
for a different "name" to belong to '"logically" identical key
domains that exist in different relations. (Note that an alias
type command could also handle this kind of flexibility.) The
key 'domain may be referred to by name or by number. JOIN
provides for operators other than equal such as: greater than and
not equal thus allowing the effect of expanded relational
operations. The key domain is removed in the resulting relation;
this is consistent with traditional join operations.

Each command follows the accepted rules for relational
algebra. General command syntax by keyword follows the standard

NASCAD form. Identifier names for relations and domains also

follow NASCAD conventions.
At the inception of the study, the NASCAD system,
implemented at NASA on a VAX 11/780 Digital Equipment Corporation

computer (written in FORTRAN 77) was already in place. The

system consists of four basic parts: the command language
interpreter, macro interpreter, the editor, and database
management system. The command language consists of operating

system commands, macro commands, data handling commands, and edit
commands. The data base management system is broken into three
logical units handling data separately for graphic, numeric, and
macro types. The 1initial commands to <create the relational
database and the select operator were also in place at that time.
These commands as well as additional commands are implemented as
macro commands.

In order to provide for change with minimal disruption of
existing programs, any modifications are modular -- made as
independent segments of existing ﬁrograms or as separate
subroutines. The following program modules are affected by the
change: DEFTBL, DEFTAB (with entry points CPYCOL and ADJTAB),
and SYSTBL. All work was done from a remote terminal at the
university linked to the Vax 11/780 computer at the NASA
facility. Testing included runs of expected command variations

as well as error conditions. Program listings are filed at NASA.

The following table lists and describes the relational

commands.

RELATIONAL COMMANDS

Notation:

R relation by name

D domain or column by name or by number

T tuple of row

d data in domain or column according to specified format

EQ, NE, GT standard logical operations equal, not equal,greater

Relational Commands Existing Prior to Study
ATTACH R retrieves R
SETTABL R retrieves R
DEFTRBL number of D, R by name defines new R

DEFCOL col number Di, D by name, format for di
defines column or domain of R

DEFROW dl, d2, ...dn defines data in each tuple or
_ Yow
DSPTRL displays current R

SELECT Di, logical opertor, constant
performs select operation

Relational Commands Implemented in Study

PRJICT D1, D2, ...,Dn project operation over D

UNPRJCT D1, D2, ..., Dn converse of project; D repre-
sents deleted domains

JOIN R1, R2, D1, logical operator, D2, K3

performs join operation over

R1 and R2 according to the
logical operation with D1 and
D2 to yield R3. Normally D1
and D2 are the same key domain.
D1 is in R1 and D2 is in RZ.

General comments and restrictions:
- Commas in above command strings are for clarity in this text;
NASCAD uses blanks as delimiters in command strings.
- Domains may not be referenced both by name and number in the
same command string.

HIDDEN-SURFACE ALGORITHM

Hidden-line/surface Algorithms

One end product of a graphic system is obviously the final
drawing. With engineering applications, the drawing of a three
dimensional object 1is made wup of precise points, lines, and
curved surfaces (represented in this application as flat polygon
patches) that are stored in the drawing database to be displayed
on a particular graphic dévice. - This drawing 1is considered
viewed from a certain perspective and the (three dimensional) x-y
coordinates are projected onto (two dimensional) screen
coordinates with the z coordinate representing depth. With the
figure completely outlined on the screen (wire frame) all lines
and surfaces are shown. The object of hidden-line/surface
gorithms is to remove those lines/surfaces from the displayed
drawing that are not visible when viewed from the planned
perspective. The hidden-line algorithm outlines only the visible
lines. The hidden-surface problem renders all visible surfaces
on the screen; shading and coloring of the object are considered
part of the problem.

The hidden-line/surface problem is one of the oldest in the
graphic field. Many algorithms have been developed over the
years. All algorithms share one common fault; they are very
time consuming. To some extent, the algorithms are suitable for
one graphic device versus another. A color raster graphics

terminal is the chosen device for this project. For this reason

10
and because it had been proven effective, the Watkins scan-line
algorithm was chosen as the initial algorithm to solve the
problem. [Newman & Sproull, 1st edition]

The Watkins algorithm is similar to other scan line
algorithms. It operates in image space on the basis of a raster
of scan 1lines. As an image space algorithm, it seeks to compute
what the image will be only at each of the resolvable dots on the
display screen. The scan lines are assumed to be horizontal-
parallel to the x-axis of the image plane coordinate system. The
process has few basic steps. The drawing 1is scanned from the
bottom up. Therefore edges are sorted by Y so that only those

intersecting the current scan line need be examined. Appropriate

sample spans are chosen across the scan-line; this involves a
form of X sort. An elimination process of sample spans occurs.
Lastly, the segments are searched for wvisibility - a Z search.

The process is repeated at each scan-line.

Implementation and Testihg

The program system implements the Watkins hidden-surface
algorithm for display of the graphic solids that will be
generated by the, NASA based, NASCAD computer aided design
system.

Preliminary data processing takes the output from the NASCAD
system that represents the three-dimensional object as flat
polygon patches projected onto the plane of the screen(x-y

coordinates) with the Z coordinate representing depth. The

1
figure is displayed in outline form on the screen with all parts
showing. The algorithm proceeds to scan the figure from bottom
to top, one line at a time. Those edges that intersect the
current Y scan line are examined for X intersection and lastly
for visibility by level of Z depth. The visible components of
the figure are filled in at each Y line. The process repeats
itself until the top of the screen is reached.

The algorithm as described in the reference [Newman &
Sproull, 1st edition] was written in SAIL, a higher level
programming language. The implementation is written in FORTRAN
IV and 1is run on the Dec 2060 (Digital Equipment Corporation)
computer. Graphic output was produced on the Tektronics 4027
color terminal. Program documentation was completed in a report
by Peter A. Brown, a university student, dated March 23, 1981.
Test data of scenes typically used in graphic reference materials
were produced by NASCAD and used for initial testing.

Final test data generated by NASCAD were figures of the
space shuttle pallet and the pallet with the more complex
telescope mounted. Tests were successful except those where the
telescope was incorporated into the drawing. The point of
concern was a center point where multiple lines joined. The
figures were broken into individual components and various
component combinations to speed test time (the entire figure took
26 minutes to draw on the screen). The case of selected
intersecting (or penetrating) planes was the broader problem with

the Watkins algorithm itself. [Newman & Sproull, 2nd edition]

12
A tripod mounted, 35 mm camera was used to present test
results as color photographic slides taken of the computer
terminal screen at various stages of solution. Extensions were
made to provide hard copy visual output on a black and white
graphics device. This was done by creating patterns in black and
white to represent any of eight colors used simultaneously. This
technique was effective where figures had relatively large
surface areas. Details were not clearly seen in the black and
white pattern, even when patterns were carefully chosen to match

the smallest surface area with the smallest pattern.

APPENDIX

COMPUTER CODE FOR HIDDEN-SURFACE ALGORITHM

This program is written in the FORTRAN IV programming language
for the DEC 2060 computer (Digital Equipment Corporation). The graphic
output devices that are supported are:

® Tektronix 4027 Color Terminal
° Tektronix 4013/4015 Series Black And White Terminal

°® RAMTEC Terminal (Unimplemented)

C THIS DOCUMENTATION SPECIFIES ALL SUBROUTINES USED

C IN THE VATKINS HIDDEN SURFACE ALGORITHM.IN ADDITION

C A BRIEF DISCRIPTION IS GIVEN OF THE SUBROUTINES

C MENTIONED.

ek dedodod dededede oo ke dedededededo e dook oo e sk o e e e ok ok ok o ok ok ok o o ok ok o ok ok ok ke e

SUBROUTINE DESCRIPTION

LOADBX THIS ROUTINE TAKES THE PRESENT SEGMENT,AND LOA
LOADS IT INTO THE B0X.THE EXTREMITIES OF THE
SEGMENT ARE REMEMBERED AS THE EXTREMITIES
OF THE BOX.

cNoNeNe Ny

XPANBX THE PRESENT SEGMENT IS ADDED TO THE BOX,IF
NECESSARY,THE EXTREMITIES OF THE BOX ARE
EXPANDED TO ENCLOSE THE NEW SEGMENT.

(FUNCTION)
BZINT IF ONLY ONE SEGMENT IS IN THE BOX,WE MAY
HAVE A DESIRE TO COMPUTE THE ’DEPTH’ OF
THAT SEGMENT AT SEVERAL POINTS.THE BZINT
FUNCTION DOES THIS,GIVEN AN XS
CO-ORDINATE AS ARGUMENT.

eNoNeoNeNeoNe! e NoNe

(PUNCTION)
ZINT THIS FUNCTION COMPUTES THE DEPTH OF THE
SEGMENT BEING LOOKED AT,GIVEN AN XS
COORDINATE AS ARGUMENT.

eNeoNeNe]

RMXSRT THIS ROUTINE REMOVES A SEGMENT FROM THE
XSORTLIST.

loRe]

RETBLK RETURN A SEGMENT BLOCK TO FREE STORAGE.

(@]

GETBLK 1GETS A BLOCK FROM FREE STORAGE AND INITIALIZE
YLEFT AND YRIGHT ENTRIES TO ZERO.

aQ

UTINE PUTS THE SFGMENT AT THE HEAD
SORT LIST.

(o N

SHWCLS CALL SHWCLS , CALL EFRAME TO END THE FRAME
AND PUT IT UP ON THE SCREEN.
STOPIC RECORD DISPLAY DATA IN AN ARRAY.
STOPIC TAKES TWO ARGUMENTS:THE XS POSITION
AT VHICH THE SEGMENT STARTS AND THE INDEX
OF THE VISAIBLE SEGMENT.IF THIS INDEX IS
ZERO,THEN THIS SECTION OF THE SCAN-LINE
IS BLANK,STOPIC RECORDS A COLLECTION OF
PAIRS X1,X2,X3 THESE ARE USED,AT THE END
OF THE SCAN-LINE TO CREATE SHADING
COMMANDS FOR THIS SCAN-LINE.

oNoNoRoNeNoNeoNeNoNe N

RECSAM THE RECORD SAMPLE ROUTINE IS CONCERNED WITH

THE COLLECTION OF SAMPLE POINTS FOR THE

TRAVERSE OF THE NEXT SCAN-LINE.A SAMPLE POINT
IS RETAINED IF A SPAN EDGE CORRESPONDS TO THE
OF THE VISIBLE SEGMENT SAMPLE POINTS ARE

RECORDED IN A LIST.SAMFST POINTS TO THE FIRST
ENTRY IN THE LIST,SAMLST TO THE LAST.SAMLINK
IS AN ARRAY OF PQINTERS.SAMX IS THE X VALUE OF TH
THE SAMPLE POINT.

eBoNeoNoNsNoNoNoNe!

Q

PUTSAM PUT A SAMPLE IN THE SAMPLE LIST FOR NEXT SCAN-

c LINE.GET A FREE SAMPLE BLOCK AND FIX UP FREE STORA
C STORAGE.ALSO IT RECORDS X POSITION OF SAMPLE POINT.

Chkikkkkhkkhkkhkkhkhkkkhkhkhkkkhkkkhkhkhkkkkhkhkhhhkthhhkhhkhkkhkhkhkkhkrhkkhdrrithhkkdhikx

SUBROUTINES WHICH ARE INVOKED BY THE THINKER
Chhkdhkrrkhrhhkrhhkxxrhhkkkkhkkhkkxhrkhkxkkkkrkkkkkkkkkxkkkkkkkkkkk
STOPIC
RECSAM
PUTSAM
STOPIC

PIXSRT
RETBLK
GETBLK

sNoNeoNeoNeReoNe!

CChhkhkkkkkkhkhkhhkkhkhkkkkkhhkkhkkkkhkkkhkkkkhhkkhkhhkkhkhkkhkkkhkhkrhkkikkkkk

C SUBROUTINES WHICH ARE INVOKED BY THE LOOKER
Chxxkkkkkhkkhhdkhkkhkkhkkkkkkkkkkkhkkkxkkkkkkhhhkhhkkkhhhhrhkdhkkx

LOADBX
XPANBX
BZINT
ZINT

Chkhkkkkhkkkhkhkkhkkkkkkkkkhkkkhhkkhkkhkkhhkhkhkkhhkhkhkhkhkhhkhkkhhkhkkhkhkkhkhkkkdhkkkk

C SUBROUTINES WHICH ARE INVOKED BY THE CONTROLLER
ot R e S S e T T T e

RMXSRT
RETBLK
GETBLK
PIXSRT
LOOKER
THINK
SHOW
SHWCLS

* THE FOLLOWING IS A GROUP OF * . CMN

Ak k A KA KRR KA AAAAKA A Ak A A A kAR Ak hkhkkhkhkkkhkkhkhkkkhhkhkkhkkhkhkhkkhkhkhhkkkhkkkhkdk

C USED BY CONTROLLER,GETBLK,RETBLK

INTEGER FRELST

COMMON/BLK/FRELST
C COMMON BLOCKS USED FOR INPUT DATA

COMMON /VERTEX/ XS(MAXPNT),YS(MAXPNT),ZS(MAXPNT)

INTEGER P1,P2,V1,V2,ENTLST

INTEGER EDGLST

INTEGER XRES, YRES

COMMON/EDG/P1{MAXEDG),P2{(MAXEDG),V1(MAXEDG),V2(MAXEDG),

1 ENTLST(MAXEDG) ,LINKED(MAXEDG) , EDGLST

INTEGER SHAD

COMMON/COLOR/ SHAD(MAXPLY)

COMMON/DEV/ IDEV, XRES, YRES
C***************************************END OF INPUT CMN******
C BOX BLOCK USED BY LOOKER & SUBROUTINES
C

INTEGER BOXCNT,BOXTYP,BFULL,BSEG1,BSEG2,SFULL, SEG

COMMON/LOKBX 1/ BOXCNT,BOXTYP,BFULL,BSEG1,BSEG2,

1 BXLEFT, BXRGHT,BZLEFT,BZRGHT,

2 BZMIN,BZMAX,DIV,SFULL, SEG

COMMON/LOKBX2/ SDIV,SXLEFT,SXRGHT,SZLEFT,SZRGHT
C POLYGON DATA BLOCKS

INTEGER CHNGNG, SEGLST

COMMON/PLYGON/ CHNGNG(MAXPLY),SEGLST(MAXPLY)

C SEGMENT DATA BLOCKS
INTEGER POLYGN,PLYSEG, XSRTLT, XSRTRT,ACTIVE, YLEFT, YRIGHT
COMMON/SEGBK 1/POLYGN(MAXSEG) , PLYSEG (MAXSEG) ,

1 ACTIVE(MAXSEG),
2 XSRTLT(MAXSEG) , XSRTRT (MAXSEG) ,
3 YLEFT(MAXSEG) , YRIGHT (MAXSEG)

COMMON/SEGBK2/ XLEFT{MAXSEG),DXLEFT{MAXSEG),

1 ZLEFT(MAXSEG) ,DZLEFT(MAXSEG),

2 XRIGHT(MAXSEG) DXRGHT(MAXSEG)

3 ZRIGHT(MAXSEG),DZRGHT(MAXSEG)
C**
C MISCELLANEOUS COMMON ROUTINE 9

INTEGER VISPOS,VISSEG

COMMON/MISC1/ VISPOS(MAXSEG),VISSEG(MAXSEG)

INTEGER SAMLNK, SAMX
COMMON/SAM/ SAMLNK(IMAX) ,SAMX(IMAX)
C USED BY CONTROLLER,STOPIC
INTEGER SEGCNT
COMMON/PIC/LASSEG, SEGCNT
C SINGLE VARIABLES USED BY THINKER,CONTROLLER
C RRECSAM, PSMPLE
INTEGER SAMFST, SAMFRE, SAMLST
COMMON/SAMSIN/ SAMFST,SAMFRE, SAMLST

C USED BY LOOKER,THINKER,CONTROLLER,RECSAM
COMMON/SPAN/ SPANRT,SPANLT, IMPLFT
C USED IN CONTROLLER,PIXSRT,RMXSRT

INTEGER SEGFST
COMMON /SRT/ SEGFST

C USED BY CONTROLLER, , THINKER
INTEGER PREV

COMMON/THK/ IMPLST,MPLST2,PREV

c MODULE USED BY LOOKER.
Chidkkkhkkhkkkkkkkkkkkkkkkkkkkhkhkrkkkkkkkkkhhkhrkrkk
C FILE NAME SUB4.FOR

C FUNCTION NAME °'BZINT;.

C THE BZINT FUNCTION IS DESIGNED TO COMPUTE THE
C ’DEPTH’ OF A SEGMENT AT SEVERAL PQINTS. GIVEN

C AN XS ARGUMENT.
Chikkkkhkkkkkkkkhkkkhhhhhhhhkhkhkkrkrrkhkrrkrkkkhkx

FUNCTION BZINT (X)
INCLUDE ’MAIN.PAR’
INCLUDE ’LOOKBX.CMN’
IF(BXRGHT .EQ. BXLEFT) GO TO 10
BZINT = BZLEFT + (BZRGHT - BZLEFT)

1 *(X -BXLEFT)/(BXRGHT-BXLEFT)
RETURN

10 BZINT = BZLEFT

RETURN
END

SUBROUTINE CONT

C BEGIN ELIMINATE

10

20

INCLUDE ’MAIN.PAR’

INCLUDE ’*MAIN.CMN’

INCLUDE ’INPUT.CMN’

INCLUDE ’BLK.CMN’

INCLUDE ’SRT.CMN’

INCLUDE ’SAMSIN.CMN’

INCLUDE’ SPAN. CMN’

INCLUDE ’THK.CMN’

INCLUDE ’LOOKBX.CMN’

INCLUDE ’PIC.CMN’

INTEGER YENTER(IYRESB)

INTEGER GETBLK

REAL LSTUSE, ZFIRST, XSLOPE, RELDLY, ZSLOPE,
1 XFIRST

INTEGER CHANGE, SEGLO, CURSEG, SEGl, YLAST,
1 K, PTR, SEGOUT, Y2, TEl, NEXT, Yl, Y,

2 YFIRST, P, J, TE2, MX, VV1, DELY, PCHLST,
3 SEGACT, ITH, IX, SAMPLE, ITEMP,

4 MXSG, Vv2, I

MXSG =MAXSEG - 1

DO 10 I = 1, MXSG

ACTIVE(I) = I+l

CONTINUE

FRELST = 1

MXSG = MAXSEG * 2 - 1

DO 20 I = 1, MXSG

SAMLNK(I) = I + 1

CONTINUE
SAMFRE = 1
C BEGIN HIDDEN-LINE INITIALIZATION
IMPLST = 0
MPLST2 = O
SEGFST = O
PTR = EDGLST

25

30

40
1000

50

IF(PTR .EQ. 0) GO TO 60

NEXT = ENTLST(PTR)

IF ((((P1(PTR).NE.0).AND.(SHAD(P1(PTR)).NE.
1 0)).0R. ((P2(PTR).NE.0).AND. (SHAD(P2(PTR))
1 .NE.0))).EQ.0) GO TO 50

J = VI(PTR)

K = V2(PTR)

IF(YS(J).LE.YS(K)) GO TO 30

ITEMP = VI(PTR) '

V1(PTR) = V2(PTR)
V2(PTR) = ITEMP
J=K

I=-YS(J) +.999999

IF((I .LT. 1).OR.(YRES.LT.I))GO TO 40
ENTLST(PTR) = YENTER(I)

YENTER(I) = PTR

GO TO 50

WRITE(S,1000) ,
FORMAT(1X, 'EDGE OUT OF BOUNDS’)

STOP

PTR = NEXT

GO TO 25

C**

60

CONTINUE
CALL SHWINT

Chhkkkkkkhkhkkkhkkkkkkhkkkkkkkkkhkkhkkrkkdkhkkkkkhkrk
C END HIDDEN LINE INITIALIZATION

C DISPLAY GENERATION

DO 730 Y = 1, YRES

C WRITE(S,789)Y

789 PORMAT(1X, Y= ',14)

C BEGIN PROCESSING BEFOR STEPPING ACROSS SCAN-LINE
PCHLST = -1
SEG = SEGFST

70 IF(SEG .EQ. 0) GO TO 100

XLEFT(SEG) = XLEFT(SEG) + DXLEFT(SEG)

XRIGHT(SEG) = XRIGHT(SEG) + DXRGHT(SEG)

2LEFT(SEG)=ZLEFT(SEG) + DZLEFT(SEG)

ZRIGHT (SEG)=ZRIGHT(SEG) + DZRGHT(SEG)

Yl = YLEFT(SEG) + 1

YLEFT(SEG) = YLEFT(SEG) + 1

Y2 = YRIGHT(SEG) + 1

YRIGHT(SEG) = YRIGHT(SEG) + 1

IF((Y1.NE. 0).AND.(Y2.NE.0)) GO TO 90

PTR = POLYGN(SEG) '

IF(PTR.NE. 0) GO TO 80
C***

CALL RMXSRT(SEG)
C***
C***

CALL RETBLK(SEG)
C***

GO TO 90
80 IF(CHNGNG(PTR).NE.O) GO T0 90
CHNGNG(PTR) = PCHLST
PCHLST = PTR
90 SEG = XSRTRT(SEG)
GO TO 70
100 PTR = YENTER(Y)
110 IF(PTR .EQ. 0) GO TO 260
C BEGIN ENTERING EDGES
VV1 = VI(PIR)
VV2 = V2(PTR)

YFIRST = YS(VV1)

YLAST = YS(VV2)

DELY = YFIRST - YLAST
RELDLY = YS(VV2) - YS(VVI)
IF(DELY.GE.0) GO TO 255

C--BEGIN MAKE SEGMENTS FOR THIS EDGE

XSLOPE = (XS(VV2)-XS(VV1))/RELDLY
XFIRST = XS(VV1) + XSLOPE * (Y-YS(VV1))
ZSLOPE = (ZS(VV2)-ZS(VV1))/RELDLY

ZFIRST = 2ZS(VV1) + ZSLOPE * (Y-YS(VV1))
DO 250 P = P1(PTR),P2(PTR)

C--BEGIN LOOK AT BOTH POLYGONS BORDERING THIS EDGE
IF(P.EQ.0) GO TO 250
C--BEGIN A REAL POLYGON
IF(CHNGNG(P).NE. 0) GO TO 120
CHNGNG(P) = PCHLST
PCHLST = P

120 SEG = SEGLST(P)

PREV = 0

J=3
130 IF(SEG.EQ.0) GO TO 190
C--BEGIN LOOK AT SEGMENTS

TE1l =(XFIRST.LT.XLEFT(SEG)).OR.(XFIRST.EQ.XLEFT(SEG)
1 .AND.XSLOPE.LT.DXLEFT (SEG))
TE2=(XFIRST.LT.XRIGHT(SEG)).OR. (XFIRST.EQ.XRIGHT (SEG)
1 .AND.XSLOPE. LT .DXRGHT (SEG))
(YLEFT(SEG).LT.0)
(YRIGHT(SEG).LT. 0)
= —(TE1*8)~(TE2%4)-(Y1%2)-(Y2)
IF((I.LT.0).0R. (I.GT.15))G0 T0 170
IF(I.NE.11)GO TO 140

hi

J=0
GO .TO 180
140 IF((I.LT.13).AND.((I.NE.5).AND.(I.NE.10)))GO TO 150
J=1
GO TO 180
150 IF(I.NE. 7) GO TO 160
J=2
GO TO 180
160 J=3
GO TO 180
170 WRITE(S,1010)
1010 FORMAT(1X, *CASE I ERROR IN CONTROLLER’)
STOP
180 IF(J .NE. 3) GO TO 190
PREV - SEG
SEG = PLYSEG(SEG)
GO TO 130
C--END LOOK AT SEGMENTS
190 IF((J.NE.1).AND. (J.NE.3)) GO TO 220
C--BEGIN INSERT NEV SEGMENT BETWEEN PREV AND SEG
: DUMMY = 0
SEG1 = GETBLK(DUMMY)
POLYGN(SEG1) =

XLEFT(SEGl) = XFIRST

DXLEFT(SEG1) = XSLOPE

ZLEFT(SEG1) =ZFIRST

DZLEFT(SEGl) = ZSLOPE

YLEFT(SEGl) = DELY
Chkkkhkkkkkkkkkkkkkhkkhhkkkhkkkkhkkhhkkkhkkkkrhhkhkkxkkk

CALL PIXSRT(SEGI)
Chkhkkkkhkkhkkkkkkkkkhkkkkhkkhkkkkhkkkkkkkkkkhkkkhkkhkkkkhkkkkk

IF(PREV .EQ. 0) GO TO 200

PLYSEG(PREV) = SEGI

GO TO 210

200 SEGLST(P) = SEG!

210 PLYSEG(SEG1) = SEG
GO TO 250

C--BEGIN SPLIT THE SEGMENT
DUMMY = 0

220 SEG1 = GETBLK(DUMMY)
POLYGN(SEG1) =

XLEFT(SEG1) = XLEFT(SEG)
DXLEFT(SEG1) = DXLEFT(SEG)
ZLEFT(SEG1) = ZLEFT(SEG)

DZLEFT(SEG1) = DZLEFT(SEG)
YLEFT(SEG1)=YLEFT(SEG)

YLEFT(SEG) = 0

XRIGHT(SEG1) = XFIRST
DXRGHT(SEG1) = XSLOPE
ZRIGHT(SEG1) = ZFIRST
DZRGHT(SEG1) = ZSLOPE

YRIGHT(SEG1) = DELY
Chkkkkkhkkkkhkkhhkrkkkhhkhrkhkrkkkkikkkkkihkkkkkhkk

CALL PIXSRT(SEG1)

C**
IF(PREV .EQ. 0) GO TO 230
PLYSEG(PREV) = SEGI

GO TO 240
230 SEGLST(P) = SEGI
240 PLYSEG(SEG1) = SEG
PREV = SEGI

C--END SPLIT THE SEGMENT
C--END A REAL POLYGON

C--END LOOK AT BOTH POLYGONS BORDERING THIS EDGE

250 CONTINUE
C—-END MAKE SEGMENTS FOR THIS EDGE
255 CONTINUE

PTR = ENTLST(PTR)

GO TO 110

C--END ENTERING EDGES
260 IF(PCHLST .EQ. -1) GO TO 375
C--BEGIN PROCESS A CHANGING POLYGON

P = PCHLST

PCHLST = CHNGNG(P)
CHNGNG(P) = O

PREV = 0
SEG = SEGLST(P)
270 IF(SEG .EQ. 0) GO TO 370

C--BEGIN TRANSFORM THE LIST
Yl = YLEFT(SEG)
Y2 - YRIGHT(SEG)
IF((Y1.GE.0).0R.(Y2.GE.0))GO TO 280
C--BEGIN SCAN FURTHER
PREV = SEG
SEG = PLYSEG(SEG)
GO TO 360
280 IF((Y1.NE.0).OR.(Y2.NE.0)) GO TO 310
C--BEGIN REMOVE THIS SEGMENT
I = PLYSEG(SEG)
IF(PREV .EQ. 0) GO TO 290
PLYSEG(PREV) = I

GO TO 300
290 SEGLST(P) = I
C**************************************
300 CALL RMXSRT(SEG)

Chrrrhkdhhhhhdhhdhdhrikhhhhhkhkhdhkhhkkkkhkk
Chxkkrdhdhddirhkkhhhhhhhhkkkkrhhikhhhkkhhkhk

CALL RETBLK(SEG)
SEG = I
GO TO 360

C***************************************
310 IF((Y1.NE.0).OR.(Y2.GE.0)) GO TO 320
C--BEGIN MOVE RIGHT TO LEFT

YLEFT(SEG) = YRIGHT(SEG)

YRIGHT(SEG) = O

XLEFT(SEG) = XRIGHT(SEG)

DXLEFT(SEG) = DXRGHT(SEG)

ZLEFT(SEG) = ZRIGHT(SEG)

DZLEFT(SEG) = DZRGHT(SEG)

GO TO 360

C--BEGIN RIGHT SIDE IS EMPTY-LOOK AT NEXT SEGMENT

320 NEXT = PLYSEG(SEG)
IF(NEXT.NE.O) GO TO 330
WRITE(5, 1020)

1020 FORMAT(1X, *NEXT ERROR’)
STOP

330 IF(YLEFT(NEXT).GE.0) GO TO 340

C--BEGIN MOVE NEXT'S LEFT TO MY RIGHT

YRIGHT(SEG) = YLEFT(NEXT)
YLEFT(NEXT) = O

XRIGHT(SEG) = XLEFT(NEXT)
DXRGHT(SEG) = DXLEFT(NEXT)
ZRIGHT(SEG) = ZLEFT(NEXT)
DZRGHT(SEG) = DZLEFT(NEXT)
GO TO 360

340 IF(YRIGHT(NEXT).GE. 0) GO TO 350

C--BEGIN MOVE NEXT'S RIGHT TC MY RIGHT’

YRIGHT(SEG) = YRIGHT(NEXT)
YRIGHT(NEXT) = O

XRIGHT(SEG) = XRIGHT(NEXT)
DXRGHT(SEG) = DXRGHT(NEXT)
ZRIGHT(SEG) = ZRIGHT(NEXT)
DZRGHT(SEG) = DZRGHT(NEXT)
GO TO 360

C--BEGIN DELETE 'NEXT’ ENTIRELY

350 PLYSEG(SEG) = PLYSEG(NEXT)
C**

CALL RMXSRT (NEXT)
Chxdkkkdkdkdhhhhkkdkkkdkkddkdhhhkihkihrhkdrkkxkkkkkkkx
ChikkdkhkdhhkhkkkkkkkkhhkkkhhkkxkkkkkkkFxkhkdk

CALL RETBLK(NEXT)
Chxdkdidkkkhhkkkkkkkxkrrhkddkkihkkkirkkkkrkhkik

C--END RIGHTSIDE IS EMPTY-LOOK AT NEXT SEGMENT

360 GO TO 270
C-~END TRANSFORM THE LIST
370 GO TO 260

C--END PROCESS A CHANGING POLYGON

375 Ga TO 385
380 IF(CHANGE .EQ.0) GO TO 430
385 CONTINUE

C--BEGIN SORT THE XSORTLIST

CHANGE = 0
SEG = SEGFST
390 IF(SEG .EQ.0) GO TO 425

C--BEGIN RAMBLE DOWN LIST

I = XSRTRT(SEG)
IF(I .EQ. 0) GO TO 425
IF(XLEFT(SEG).LE. XLEFT(I))GO TO 420

C--BEGIN SWAP

CHANGE = -1
IF(XSRTLT(SEG).EQ. 0) GO TO 400
K = XSRTLT(SEG)
XSRTRT(K) = I

400 K = XSRTLT(SEG)
XSRTLT(I) = K
XSRTLT(SEG) = I
IF(XSRTRT(I) .EQ. 0) GO TO 410
K= XSRTRT(I)
XSRTLT(K) = SEG

410 K = XSRTRT(I)
XSRTRT(SEG) = K
XSRTRT(I) = SEG
IF(SEGFST.EQ.SEG) SEGFST = I

GO TO 425

C--END SWAP

420 SEG = XSRTRT(SEG)
GO TO 290

425 CONTINUE
GO TO 380

C--END RAMBLE DOWN LIST
C--END SORT THE LIST
C-- END PROCESSING BEFORE STEPPING ACROSS SCAN-LINE

430 SEGACT = 0
SEGCNT = 0

440 IF(IMPLST.EQ.0) GO TO 450
IMPLST = XSRTRT(IMPLST)
J = IMPLST

Chhkkhkkkthhkkhkhkkhkhkhkkhkhkkkkhkxkkhkkdkirrhhhkkhhhkkkkhkkkk

CALL RETBLK(J)
Chikkkkdhkkkhkkkhkkkkkhhkhhrhhhhhrrddkkkhkkxkkkkikkkhk

GO TO 440

450 IMPLST = MPLST2
MPLST2 = O
CURSEG = SEGFST
SPANRT = 0
SAMPLE = SAMFST
SAMLST = 0
LSTUSE = O

455 GO TO 465

460 IF(SPANRT .EQ. XRES) GO TO 700

465 CONTINUE
C--BEGINSAMPLE ACROSS THE SCAN LINE

SPANLT = SPANRT + 1
IF(SPANLT .LE. LSTUSE) GO TO 490

C--BEGIN MOVED TO RIGHT OF LAST SAMPLE SPAN
IF(SAMPLE .EQ. 0) GO TO 470
C--BEGIN MORE SAMPLES LEFT
SPANRT = SAMX(SAMPLE)
IX = SAMPLE

SAMPLE = SAMLNK(SAMPLE)
SAMLNK(IX) = SAMFRE

SAMFRE = IX
LSTUSE = SPANRT
GO TO 480
470 SPANRT = XRES
480 GO TO 500
490 SPANRT = LSTUSE
500 IMPLFT = O

C--VHILE STATEMENT SIMULATION UNTIL STMT #670
C--WHEN THINKER IS TRUE, THIS WHILE BLOCK WILL

C--BE LEFT.

510 CONTINUE
BOXCNT =
SEGOUT =
PREV = 0
SEG = SEGACT

520 IF(SEG .EQ. 0) GO TO 590

0
0

C--BEGIN ACTIVE SEGMENTS

NEXT = ACTIVE(SEG)
IF(XRIGHT(SEG).GE.SPANRT + 1) GO TO 560

C--BEGIN IT ENDS IN THIS SPAN

IF(PREV.EQ. 0) GO TO 530
ACTIVE(PREV) = NEXT

GO TO 540

530 SEGACT = NEXT

540 ACTIVE(SEG) = SEGOUT
IF(SEGOUT .EQ. 0) SEGLO = SEG
SEGOUT = SEG

IF(XRIGHT(SEG).LT.SPANLT) GO TO 550
C**

CALL LOOKER
Chhkkkkkhkhkkkkkkhkrkhkkkkkkxhkhkkkxkkkkxxxrkkkxkk

C---END IT ENDS IN THIS SPAN

550 GO TO 580
560 IF(XLEFT(SEG).GT.SPANRT) GO TO 570
C******************************k************

CALL LOOKER

Chikkihkhkhkkhkkhkhkkhhkkhdrrhhddhdhhkhrkhhhkthkkkhkkhkix

570 PREV = SEG

580 SEG = NEXT
GO TO 520

590 IF(CURSEG .EQ. 0) GO TO 640
SEG = CURSEG

IF(XLEFT(SEG) .GT. SPANRT) GO TO 640
CURSEG = XSRTRT(CURSEG)
IF(POLYGN(SEG) .NE. 0) GO TO 605

C-- BEGIN IMPLIED EDGE BLOCK

IF(.NOT.((1.LE.XLEFT(SEG)).AND. (XLEFT(SEG)
1 .LE. XRES)).AND. ((PLYSEG(SEG)/10000).EQ.
1 LASSEG)) GO TO 600

C BEGIN OK TO KEEP IMPLIED EDGE

IMPLFT = SEG

GO TO 630
C BEGIN THROV OUT IMPLIED EDGE
C***
600 CALL RMXSRT(SEG)
C***
C***

CALL RETBLK(SEG)
C-- END IMPLIED EDGE BLOCK

GO TO 630
C--BEGIN REAL EDGE BLOCK

605 IF(XLEFT(SEG)+1.GE.XRIGHT(SEG))GO TO 630
IF(XRIGHT (SEG).GE.SPANRT+1) GO TO 610
ACTIVE(SEG) = SEGOUT
IF(SEGOUT.EQ. 0) SEGLO = SEG

SEGOUT = SEG

GO TO 620
610 ACTIVE(SEG) = SEGACT

SEGACT = SEG
Chikkhkkkkhkkkkkkkkkkkkkdhkkhikddkikkkkkhx§hxkkhk
620 CALL LOOKER

C***

630 GO TO 590
C--END LOOKS GOOD

C--END REAL EDGE BLOCK
C-- END XSORT SEGMENT

640 CONTINUE
Chikkkkkkkhkkhxkkkkkkkkrkkkhk Ak kkkkkkkxrkdkkddkkdrhk

CALL THINK(ITH)
C***
IF(ITH .NE.O) GO TO 680
IF(SEGOUT.EQ. 0) GO TO 650
ACTIVE(SEGLO) = SEGACT
SEGACT = SEGOUT
650 I = DIV
IF(I .LT. SPANRT) GO TO 660
C--BEGIN DIVIDE AT MID POINT
I = (SPANLT + SPANRT)/2

SPANRT = I

GO TO 670
660 SPANRT = I
670 GO TO 510

C--END SUBDIVIDE SAMPLE SPACE

680 IF(IMPLFT .EQ. 0) GO TO 690
C**

CALL RMXSRT(IMPLFT)

CALL RETBLK(IMPLFT)
C**

C__END SAMPLE ACROSS THE SCAN LINE

690 GO TO 460

700 IF(SAMLST.EQ.0) GO TO 710
SAMLNK (SAMLST) = 0
GO TO 720

710 SAMFST = 0

Chkhkkhkhkkkkkkhkkkkkkkkhkkkkkkkkkxhhkkhhkrkhkhhkkkikk

720 CONTINUE

IB = Y

CALL SHOW(IB)
C***
730 CONTINUE
C--END DISPLAY GENERATION

CALL SHWCLS
C-- END ELIMINATE

RETURN

END

c MISCELLANEQUS PROCEDURE.
Chhkkkkkkikhhkkhkkkkkkrkrhdhikkhkrhkkkkkkkkkkkkk
C FUNCTION NAME GETBLK.

C THIS FUNCTION GETS A BLOCK FROM FREE STORAGE

C AND INITIALIZE YLEFT AND YRIGHT ENTRIES TO ZERO.
Chhkkkkkhkkrkkhkihdkkdxdkhhdhkhkkiridkkkhkkkkkikkkk

INTEGER FUNCTION GETBLK(DUMMY)
INCLUDE ’'MAIN.PAR’
INCLUDE ’*MAIN.CMN’
INCLUDE *BLK.CMN’
I = FRELST
IF(I .NE. 0) GO TO 20
WRITE(S,4)

4 FORMAT(3X, NO MORE FREE STORAGE'’)
STOP

20 YLEFT (I)
YRIGHT(I) = O
FRELST = ACTIVE(I)
GETBLK = I
RETURN
END

0

C MODULE USED BY LOOKER.
Chkdkdkdkdkkkhhhkkdkdkdkkhhrkhikkdidkidkkdkkhkkkikkkkkkkkkk

C FILE NAME ’SUB2.FOR’

C SUBROUTINE NAME ’LOADBX’.

C THIS ROUTINE TAKES THE PRESENT SEGMENT, AND "LOADS"
C IT INTO THE BOX. THE EXTREMITIES OF THE SEGMENT ARE

C REMEMBERED AS THE EXTREMITIES OF THE BOX.
ChAk Ak hkdkhdk Ak xkkhhkrFdhhokdrkhdrkxkrkkxhihkhkrhkxkihk

SUBROUTINE LOADBX
INCLUDE 'MAIN.PAR’
INCLUDE ’LOOKBX.CMN’

BOXCNT = 1
BOXTYP = O
BXLEFT = SXLEFT
BXRGHT = SXRGHT
BZLEFT = SZLEFT
BZRGHT = SZRGHT
BSEGl = SEG
BZMIN = BZLEFT
BZMAX = BZRGHT

IF(BZMIN.LE.BZMAX) GO TO 10
CALL SWAP(BZMIN,BZMAX)

10 DIV = SDIV
BFULL = SFULL
RETURN

END

aa

el EsEsNeoNsNoNoNoNoNoNs NoRsNoNrNoReoNoNoNeNe]

Cx
C
Cx
C
C

c
c
c
c
c
C
c
c
c
c
c
C

*

FILE NAME SUBL
SUBROUTINE NAME ’LOOKER’.

THE LOOKER IS A SUBROUTINE WHICH EXAMINES THE SEGMENT
INDEXED BY ’SEG’,AND ADDS IT TO THE PRESENT BOX,ECT.
VARIABLES USED BY THE LOOKER:

VARTABLE DESCRIPTION

BXLEFT,BXRGHT LEFT AND RIGHT EDGES OF BOX.

BZMIN, BZMAX NEAR AND FAR EDGES OF THE BOX.

BZLEFT,BZRGHT WHEN ONLY ONE SEGMENT IS IN THE BOX.THESE
CONTAIN THE ZS COORDINATES OF THE LEFT
AND RIGHT ENDS OF THAT SEGMENT.

BOXCNT COUNT OF NUMBER OF SEGMENTS IN THE BOX.

BOXTYP 1 IF VE HAVE COMPUTED THE INTERSECTION
OF TVO PENETRATING SEGMENTS(IMPLIED EDGE)

ELSE O.
DIV THE PLACE TO SUBDIVIDE THE SPAN IF NEEDED.
BFULL TRUE IF THE ONE SEGMENT IN THE BOX IS A SPANNER..
BSEG1 THE INDEX OF THE FIRST SEGMENT IN THE BOX.
BSEG2 THE INDEX OF THE SECOND SEGMENT IN THE BOX

(THIS IS KEPT BECAUSE OF IMPLIED EDGES)
SXLEFT,SXRGHT XS COORDINATES OF LEFT AND RIGHT ENDS OF THE
SEGMENT BEING EXAMINED.
SZLEFT,SZRGHT SAME FOR ZS COORDINATES.
SFULL TRUE IF SEGMENT BEING LOOKED AT IS A SPANNER.
LR E e et T g T e T e e R T T T e 2 2 T T e

SUBROUTINES CREATED FOR USE BY THE LOOKER.
Ik kkhkkkhkkkkkkkkkkkkkkkhkhkkhkkhkkrkrkkhkkkkkkhkhkkkkkrkkkxk*
SUBROUTINE FUNCTION
LOADBX TAKES THE PRESENT SEGMENT, AND LOADS IT INTO
THE BOX.THE EXTREMITIES OF THE SEGMENT ARE
REMBERED AS THE EXTREMITIES OF THE BOX.
XPANBX THE PRESENT SEGMENT IS ADDED TO THE BOX.IF
NECESSARY, THE EXTREMITIES OF THE BOX ARE EXPANDED
TO ENCLOSE THE NEW SEGMENT.
BZINT IF ONLY ONE SEGMENT TS IN THE BOX,.WE MAY HAVE
A DESIRE TO COMPUTE THE DEPTH OF THAT SEGMENT
AT SEVERAL POINTS.THE BZINT FCT DOES THIS,GIVEN
AN XS COORDINATE AS ARGUMENT,
ZINT THIS FUNCTION COMPUTES THE DEPTH OF THE SEGMENT

BEING LOOKED AT, GIVEN AN XS COORDINATE AS ARGUMENT.
Fkdkdkkdokok ok ok ko kK dokk Kk Kk kkkkk kI KIhkk* ARk Ak khhhhdhdddk &k ko

SUBROUTINE LOOKER
INCLUDE ’MAIN.PAR’
INCLUDE ’MAIN.CMN’
INCLUDE ’LOOKBX.CMN’
INCLUDE ’SPAN.CMN’

SXLEFT = XLEFT(SEG)

SZLEFT = ZLEFT(SEG)

SXRGHT = XRIGHT(SEG)
SZRGHT = ZRIGHT(SEG)
SFULL = -1

IF(SXLEFT .GT. SPANLT) GO TO 10
SZLEFT = ZINT(SPANLT)

SXLEFT = SPANLT

GO TO 15

10 SFULL = 0

15

IF(SXRGHT .LT. SPANRT) GO TO 20
SZRGHT = ZINT(SPANRT)
SXRGHT = SPANRT

GO TO 21

20 SFULL = 0

21 IF(SXLEFT .LE. SPANLT) GO TO 22
SDIV = SXLEFT
GO TO 23

22 SDIV = SXRGHT

23 IF(BOXCNT .EQ. O0) GO TO 1000

IF(BOXCNT .EQ. 1) GO TO 25

IF((SXLEFT .LE. BXLEFT).AND.(SXRGHT.GE.BXRGHT)
1 .AND.(SZLEFT.LE.BZMIN).AND. (SZRGHT.LE.BZMIN))
1 GO TO 1000

IF((BXLEFT.LE.SXLEFT).AND. (BXRGHT.GE.SXRGHT)
1 .AND. (BZMAX.LE.SZLEFT).AND. (BZMAX.LE.SZRGHT))

1 RETURN
Chikhkdhkhhkkkhkrrhhhkhhkkkkkhkkkkkkkkhkkkhkkhkhkkkhkkkhkkkhhikhkk
CALL XPANBX
Chhkkkkkkhhkhkhkkhhkhkhkkhkhkhhkkhhkkhhkhkkkkkrrhkhhkhhhdkhkkkhhkhkk
RETURN
25 IF((BXLEFT.LE.SXLEFT).AND. (BXRGHT .GE. SXRGHT)

1 .AND. (BZINT(SXLEFT).LE.SZLEFT).AND.

1 (BZINT(SXRGHT).LE.SZRGHT))RETURN
IF((SXLEFT.LE.BXLEFT).AND. (SXRGHT.GE.BXRGHT)

1 .AND. (ZINT(BXLEFT).LE.BZLEFT).AND.

1 (ZINT(BXRGHT).LE.BZRGHT))GO TO 1000

IF((SFULL .NE. 0) .AND. (BFULL .NE. 0)) GO TO 29
Chkhhkkkkkhkkhkkkkkkhkkkkkkkkhkhkhkhkkkkhkkhkkkhkhkhkkhkkrkkkkhkkdkk

CALL XPANBX
oo oo o e e o o e o e e ok e e e ok ok ok ok ke ok ek sk ok sk sk ok ok ok e ok o ok ok
RETURN
29 TEMP = BXLEFT + (BXRGHT - BXLEFT) *
1 (SZLEFT - BZLEFT) / (BZRGHT - BZLEFT
1 - SZRGHT + SZLEFT)
Chkdkdkdkkdhkdhdkdkdddkkkhdkrhhdkdddk dokdhhrhddkdk ki kkkkkk
CALL XPANBX

Chkdhkdkdhkhkhhdkkkkdkkkrhhkrrdhdohdod sk dddkd fok ko k& ko k &k dodok ok
BOXTYP = 1

DIV = TEMP
IF(BZLEFT .LT. SZLEFT)CALL SWAP(BSEGI,BSEG2)
RETURN

1000 CALL LOADBX

9999 RETURN

END

C MAIN CONTROL PRROGRAM
INCLUDE ’MAIN.PAR’
INCLUDE ’INPUT.CMN’
WRITE(S,9)

9 FORMAT(2X,’ OPTIONS:’/,3X,’1-4027°/,3X,’2-4013/16"/,3X,
173-RAMTEC’,//)
READ(S, *) IDEV
GOTO(4,6,8),IDEV

8 WRITE(5,19)

19 FORMAT(1X,’ SWITCH IS NOT AVILABLE ’)
STOP

4 XRES=IXRES1
YRES=IYRES]
GO TO 10

6 XRES=IXRES2
YRES=IYRES2

10 CALL READIN
CALL CONT
STOP

END

c

MISCELLANEQUS PROCEDURE.

Cxdkd ke dok Kok kkk ik kkkkkhhkkdkdkkokkkkkkikkkkkkkkxkk
C SUBROUTINE PIXSRT
C THIS SUBROUTINE PUT THE GIVEN SEGMENT AT THE

C HEAD OF THE XSORT LIST.
Chkkkkkkkkhhkrkkkrkrhhhhhdkkkhkkhkhkdrkskkkkkkkrx

20

SUBROUTINE PIXSRT(SEG)
INCLUDE ’MAIN.PAR’

INCLUDE ’MAIN.CMN’

INCLUDE ’SRT.CMN’

INTEGER SEG

IF(SEGFST .EQ. 0) GO TO 20
XSRTLT(SEGFST) = SEG
XSRTLT(SEG) = 0
XSRTRT(SEG) = SEGFST
SEGFST = SEG

RETURN

END

C PROC USED BY RECORDSAMPLE.
Chhkkkkkkkdkhkkkkkkkkhkkkkkkhkkhkkkikkkkkkhkkkkkkkkkk
C MODULE PUTSAMPLE

C FILENAME SUB12.FOR

C SUBROUTINE NAME PSMPLE

c

c
SUBROUTINE PSMPLE(X)
INCLUDE ’MAIN.PAR’
INCLUDE ’MAIN.CMN’
INCLUDE ’SAMSIN.CMN’
I = SAMFRE
SAMFRE = SAMLNK(I)
IF(SAMLST .EQ. 0) GO TO 10
SAMLNK (SAMLST) = I
GO TO 15

10 SAMFST = I

15 SAMLST = I
SAMX(I) = X
RETURN

END

SUBROUTINE READ2
C MAIN READIN ROUTINE
INCLUDE ’'MAIN.PAR’
INCLUDE *INPUT.CMN’
INTEGER PLYPTR(MAXPLY),PLYEDG(MAXPLY)
WRITE(S,988)
988 FORMAT(1X, 'INPUT SIZE: ')
READ(S, *)SIZE
C CLEAR P1, P2
DO 10 I=1,MAXEDG

PI(I) = O

P2(I) = O
10 CONTINUE

READ(22,1000) NPTS, NEDGE, NPOLY
1000 FORMAT (314)

IF (NPTS.GT.MAXPNT.OR.NEDGE.GT.MAXEDG.OR.
1 NPOLY .GT. MAXPLY) GO TO 888
C READ VERTICES

C
WRITE(5,97)
97 FORMAT(1X,’ X,Y,Z ')
DO 20 I = 1,NPTS
READ (22,2000) XS(I),YS(I),2S(I)
2000 FORMAT (3F4.0)
WRITE(S,*) XS(I),YS(I),ZS(I)
C
C ADJUST SCREEN SIZE
C

XS(I) = XS(I)/SIZE
YS(I) = YS(I)/SIZE
20 CONTINUE
EDGLST = NEDGE
WRITE(5,876)
876 FORMAT(1X,’ NEXT POSITION’)
DO 30 I = !,NEDGE
ENTLST (I) = I-1
READ (22,1000) V1(I),V2(I),LINKED(I)
WRITE(S, *)V1(I),V2(I),LINKED(I)
C LINKED NOT USED HERE BUT PUT TO BE COMPATABLE WITH CADCOM INPUT
30 CONTINUE
C FORMAT DOES NOT AGREE WITH BRAKE, TAKEN.EXACTLY FROM WATKINS
C ON TEXT -- SIMPLE PROGRAM TO GENERATE THIS FORMAT FROM BRAKE
C ONCE FINAL FORMAT IS ESTABLISHED.
DO 50 I=1,NPOLY
PLYPTR NOT USED FOR WATKINS, PLYEDG NOT NEEDED TO RETAIN

Qo

READ (22,1000) PLYPTR (I),SHAD(I),PLYEDG(I)
J=PLYEDG(I)
DO 40 L=1,J

GET EDGE NUMBER FOR EDGE

DETERMINE WHAT POLYGON/S BORDER EACH EDGE
READ(22,1000) K
IF(P1(K).EQ.0) GO TO 35
P2(K) =I
GO TO 40

35 PI(K) = I

40 CONTINUE

50 CONTINUE

C TO INITIALIZE SCREEN

c CALL INITSR

Q0

77

7000

931

4000

CONTINUE

WRITE(S,7000)

FORMAT (' (WOR 30’/° !GRA 1,307/
1 ' 1ERA G')

WRITE(S5,931)

FORMAT(1X,’ HERE ARE THE SHADES’)
DO 90 I=1,NPOLY

WRITE (5,4000) SHAD(I)
WRITE(5,*)SHAD(I)

FORMAT (' !'COL C’,I1)

C ASSUME REPEATED EDGES

K=PLYPTR(I)
KK=K+PLYEDG(I)-1

DO 80 J=K,KK
IXS=XS(V1(J))
IYS=YS(V1(J))
IXS2=XS(V2(J))
TYS2-YS(V2(J))

WRITE (5,5000)IXS,IY¥S,IXS2,IYS2
FORMAT (' !VEC’,4I4)
CONTINUE

CONTINUE

CALL CONT

GO TO 999

WRITE (5,8000)

FORMAT (’ TOO MUCH DATA’)
RETURN

END

SUBROUTINE READIN
C MAIN READIN ROUTINE
INCLUDE ’MAIN.PAR’
INCLUDE ’INPUT.CMN’
INTEGER PLYPTR(MAXPLY),PLYEDG(MAXPLY)
VRITE(S,988)
988 FORMAT(1X, *INPUT SIZE: ’)
READ(S, *)SIZE
C CLEAR P1, P2
DO 10 I=1,MAXEDG

PI(I) = O

P2(I) = O
10 CONTINUE

READ(22,1000) NPTS, NEDGE, NPOLY
1000 FORMAT (3I4)

IF (NPTS.GT.MAXPNT.OR.NEDGE.GT.MAXEDG.OR.
1 NPOLY .GT. MAXPLY) GO TO 888
C READ VERTICES

C
DO 20 I = 1,NPTS
READ (22,2000) XS(I),YS(I),ZS(I)
2000 FORMAT (3F4.0)
c
C ADJUST SCREEN SIZE
C
XS(I) = XS(I)/SIZE
YS(I) = YS(I)/SIZE
20 CONTINUE

EDGLST = NEDGE
DO 30 I = 1,NEDGE

ENTLST (I) = I-1

READ (22,1000) V1(I),V2(I),LINKED(I)

C LINKED NOT USED HERE BUT PUT TO BE COMPATABLE WITH CADCOM INPUT

30 CONTINUE

C FORMAT DOES NOT AGREE WITH BRAKE, TAKEN EXACTLY FROM WATKINS
C ON TEXT -- SIMPLE PROGRAM TO GENERATE THIS FORMAT FROM BRAKE

C ONCE FINAL FORMAT IS ESTABLISHED.
DO 50 I=1,NPOLY

C PLYPTR NOT USED FOR WATKINS, PLYEDG NOT NEEDED TO RETAIN
Cc .
READ (22,1000) PLYPTR (I),SHAD(I),PLYEDG(I)
J=PLYEDG(I)
DO 40 L=1,J
C
C GET EDGE NUMBER FOR EDGE
C DETERMINE VHAT POLYGON/S BORDER EACH EDGE
READ(22,1000) K
IF(P1(K).EQ.0) GO TO 35
P2(K) =I
GO TO 40
35 PI(K) = I
40 CONTINUE
50 CONTINUE
C TO INITIALIZE SCREEN
CALL SHWINT
77 CONTINUE
DO 90 I=1,NPOLY
GOTO(100,110,120), IDEV
100 VRITE (5,4000) SHAD(I)
4000 FORMAT (’ !COL C’,Il)

C ASSUME REPEATED EDGES

110

5000

88
80
90

888
8000

120
130
999

K=PLYPTR(I)
KK=K+PLYEDG(I)-1

DO 80 J=K,KK
IXS=XS(V1(J))
IYS=YS(V1(J))
IXS2=XS(V2(J))
1YS2=YS(V2(J))

IF(IDEV .EQ. 1)GO TO 88
CALL MOVABS(IXS,IYS)
FORMAT (' !VEC’,414)

CALL DRWABS(IXS2,IYS2)

GO TO 80
WRITE(5,5000)IXS,IYS,IXS2,IYS2
CONTINUE

CONTINUE

CALL CONT

GO TO 999

WRITE (5,8000)

FORMAT (' TOO MUCH DATA’)
GO TO 999

WRITE(S,130)

FORMAT(1X,’ SWITCH IS NOT AVILABLE’)
RETURN

END

10

20

30

SUBROUTINE RECSAM(SEG,LEFT,RIGHT)
INCLUDE ’'MAIN.PAR’

INCLUDE ’*MAIN.CMN’

INCLUDE ’SPAN.CMN’

INCLUDE ’SAMSIN.CMN’

INTEGER SEG,RIGHT

REAL LSAMP

IF(.NOT.((LEFT.NE.O).AND. (IMPLFT.NE.0).AND. (XLEFT(SEG).NE.0)

1 .LE.(SPANLT.NE.0).AND. (SEG.NE.0).EQ.MOD(PLYSEG(IMPLFT)
1 ,10000))) GO TG 10

A = XLEFT(IMPLFT) + DXLEFT(IMPLFT)

CALL PSMPLE(A)

IMPLFT = O

IF(.NOT. ((LEFT.NE.O).AND. (YLEFT(SEG).NE.0).LT.-1
1 .AND.(LEFT.EQ.-1.0R.(SPANLT-1.LT.XLEFT(SEG).AND.
1 XLEFT(SEG).LE.SPANLT)))) GO TO 20
IF(.NOT.(SAMLST.EQ.0.OR.LSAMP.NE.SPANLT-1.0R.

1 LEFT.EQ.-1)) GO TO 20

B = (XLEFT(SEG) + DXLEFT(SEG))

CALL PSMPLE(B)

LSAMP = SPANLT-1

IF(.NOT. ((RIGHT.NE.O).AND.YRIGHT(SEG).LT.-1

1 .AND. (SPANRT.LE.XRIGHT(SEG).AND.XRIGHT (SEG).LT.
1 SPANRT+1))) GO TO 30

C = XRIGHT(SEG) + DXRGHT(SEG)

CALL PSMPLE(C)

LSAMP = SPANRT

CONTINUE

RETURN

END

C MISCELLANEOUS PROCEDURE.
Chhkkkhhkkhhkidkkrkkkrkkhkrkhkrkkkkkkkkrkkkkkkkk
C SUBROUTINE NAME RETBLK.

C THIS SUBROUTINE IS USED TO RETURN

C A SEGMENT BLOCK TO FREE STORAGE.
ChkkhkhkkhrhhkhdkrFhxXhFxHhkhkkkkkkxrkdhxxkkkkk

SUBROUTINE RETBLK(I)
INCLUDE ’MAIN.PAR’
INCLUDE 'MAIN.CMN’
INCLUDE ’'BLK.CMN’
ACTIVE(I) = FRELST
FRELST = I

RETURN

END

c

MISCELLANEOUS PROCEDURE

Chikkkkkdkkkkhk kXA xkkhxhkkkrxdhkkrhkhhkkhhkkkkkhkkik
C SUBROUTINE NAME RMXSRT
C THIS SUBROUTINE REMOVES A SEGMENT FROM THE

C XSORT LIST.
Chhkdkhhidkkkkkkikkkxkhkrkhkhhxhkhkkkkkkkhkkkkhhkkrkkkkkx

10

20

SUBROUTINE RMXSRT(SEG)
INCLUDE ’MAIN.PAR’

INCLUDE ’MAIN.CMN’

INCLUDE ’SRT.CMN’

INTEGER SEG

IF(SEGFST .NE. SEG) GO TO 10
SEGFST = XSRTRT(SEG)

I = XSRTRT(SEG)

IF(I .EQ. 0) GO TO 20
XSRTLT(I) = XSRTLT(SEG)

I = XSRTLT(SEG)

IF(I .EQ. 0) RETURN
XSRTRT(I) = XSRTRT(SEG)
RETURN

END

c

66

10

100
200

91

20
30

888
300
999

C DISPLAY SUBROUTINE

SUBROUTINE SHOW(Y)

INCLUDE *MAIN.PAR’
INCLUDE ’*MAIN.CMN’

INCLUDE ’INPUT.CMN’

INCLUDE ’PIC.CMN’

INTEGER X,SEG,POLYG,SAMP,Y
DIMENSION IDASH(7),ICHECK(7),IREPT(7)
DATA IDASH/1,2,3,4,5,5,2/

DATA ICHECK/7%-1/

DATA IREPT/10,30,30,30,1,1,20/
DATA IFLAG/0/

SAMP=0

IF (SEGCNT.LE.1) GO TO 999

DO 30 I=1,SEGCNT

SEG = VISSEG(I)

X = VISPOS(I)

IF (SEG.EQ.0) GO TO 20

POLYG = POLYGN(SEG)
GOTO(4,66),IDEV
ICOL=SHAD(POLYG)

CALL PNTABS(SAMP,Y)

CALL PNTABS(X,Y)
IF(ICHECK(ICOL) .LT. 0)GO TO 5
IDEL=ICHECK(ICOL)-SAMP

IF(IDEL .EQ. 0)GO TO 6
IF(MOD(ABS(IDEL),IREPT(ICOL)) .EQ. 0)GO TO 6
SAMP=SAMP+1

IF(SAMP .GE. X)GO TO 6
IDEL=ICHECK(ICOL)-SAMP

GO TO 10

ICHECK(ICOL)=SAMP

GOTO 6

WRITE(5,100) SHAD(POLYG)
FORMAT(’ !COL C’,I1)
WRITE(5,200) SAMP,Y,X,Y
FORMAT(’ !VEC ’,414)

GO TO 20

IF(ICOL .NE. 6)GO TO 91
IFLAG=IFLAG+1

IF(MOD(IFLAG,5) .EQ. 0)GO TO 91
GO TO 20

CALL MOVABS(SAMP,Y)

CALL DSHABS(X,Y,IDASH(SHAD(POLYG)))
SAMP=X

CONTINUE

GO TO 999

WRITE(5, 300)

FORMAT(’ SEGCNT =0,NO OUTPUT’)
RETURN

END

SUBROUTINE SHWCLS
CALL FINITT(O,0)
RETURN

END

C INITIALIZE SCREEN
SUBROUTINE SHVINT
INCLUDE ’'MAIN.PAR’
INCLUDE ’INPUT.CMN’
GOT0(10,20,30), IDEV

10 WRITE(S,7000)
7000 FORMAT(1X,’ !WOR 30’/’ 'GRA 1,307/
1 ' 1ERA G’)
RETURN
20 CALL INITT(120)
RETURN *
30 WRITE(5,8000)
8000 FORMAT(1X,’ SWITCH IS NOT AVILABLE’)
RETURN

END

SUBROUTINE STOPIC(X,SEGMEN)
INCLUDE ’MAIN.PAR’

INCLUDE ’MAIN.CMN’

INCLUDE ’PIC.CMN’

INTEGER SEGMEN

IF((SEGCNT .EQ. 0).OR.(SEGMEN.NE.LASSEG))GO TO 10

GO TO 15 .
10 SEGCNT = SEGCNT + 1
LASSEG = SEGMEN
15 VISPOS(SEGCNT) = X
VISSEG(SEGCNT) = LASSEG
RETURN
END

Chhkkkkhkhhkkhkhkkhkkkhkhkhkkhkhkhkhkhkrkrhkhkhkhkhkrhkkkrkkkkhkkhkhkhkkk

C FILE NAME "SUB.FOR".
c SUBROUTINE NAME ’SVAP’.
C THIS SUBROUTINE IS DESIGNED TO INTERCHANGE THE

C CONTENTS OF TWO VARIABLES.
Chikkkhkkhkhkhhhhkkhkkkkkhkkkkkhhhkkhkdrxkkddkkkk*

SUBROUTINE SWAP(X1,X2)
TEMP = X1

X1l = X2

X2 = TEMP

RETURN

END

SUBROUTINE THINK(ITH)
INCLUDE ’MAIN.PAR’
INCLUDE ’MAIN.CMN’
INCLUDE ’LOOKBX.CMN’
INCLUDE ’THK.CMN’
INCLUDE . * SPAN. CMN’
INCLUDE ’SAMSIN.CMN’
INTEGER SEGSAM
INTEGER GETBLK
INTEGER XRES
XRES = IXRES
C--BEGIN THINKER
IF(BOXCNT .NE. 0) GO TO 10
C--BEGIN NOTHING VISIBLE
CALL STOPIC(SPANRT,0)

ITH = -1

RETURN
C**
10 IF(BOXCNT .NE. 1) GO TO 20

C--BEGIN ONLY ONE SEGMENT, DISPLAY DIRECTLY
IF(BXLEFT .NE. SPANLT) CALL STOPIC(BXLEFT,O0)
CALL STOPIC(BXRGHT,BSEG1)
IF(BXRGHT .NE. SPANRT) CALL STOPIC(SPANRT,O0)
CALL RECSAM(BSEGI,1,1)

ITH = -1

RETURN
C**
20 IF(BOXTYP .NE. 1) GO TO 110

C--BEGIN INTERSECTING PLANES CASE
CALL STOPIC(DIV,BSEGI)
CALL RECSAM(BSEG1,1,0)
SEGSAM = BSEGl * 10000 + BSEG2
SEG = IMPLST
PREV = O
30 IF(SEG .EQ. 0) GO TO 40
TF(SEGSAM .EQ. PLYSEG(SEG)) GO TO 40
PREV = SEG
SEG = XSRTRT(SEG)
GO TO 30
40 IF(SEG .EQ. 0) GO TO 90
C--BEGIN FOUND A PREVIOUS ONE
IF(PREV .EQ. 0) GO TO 50
XSRTRT(PREV) = XSRTRT(SEG)

GO TO 60
50 CONTINUE

IMPLST = XSRTRT(SEG)
60 CONTINUE

DXLEFT(SEG) = DIV - XLEFT(SEG)

XLEFT(SEG) = DIV

IF(.NOT. (1.LE.XLEFT(SEG)+DXLEFT(SEG).AND.

1 XLEFT(SEG)+DXLEFT(SEG).LE.XRES)) GO TO 70
C--BEGIN IMPLIED EDGE WILL BE WITHIN BOUNDS ON NEXT SCANLINE

CALL PIXSRT(SEG)

CALL RECSAM(SEG,-1,0)

GO TO 80
70 CALL RETBLK(SEG)
80 GO TO 100
C--BEGIN DETECTED NEW IMPLIED EDGE
90 J = GETBLK(J)

PLYSEG(J) = SEGSAM
I = YLEFT(BSEGI)

IF(I .LT. YRIGHT(BSEGl)) I = YRIGHT(BSEGI)
IF(I .LT. YLEFT(BSEG2)) I = YLEFT(BSEG2)
IF(I .LT. YRIGHT(BSEG2)) I = YRIGHT(BSEG2)
YLEFT(J) = I

POLYGN(J) = O

XLEFT(J) = DIV

XSRTRT(J) = MPLST2

MPLST2 = J
100 CALL STOPIC(SPANRT,BSEG2)

CALL RECSAM(BSEG2,0,1)

ITH = -1

RETURN
C**
110 IF(SPANLT .NE. SPANRT) GO TO 120
C--BEGIN MUST NOT SUBDIVIDE FURTHER

ITH = -1

RETURN
C***
120 ITH = 0

RETURN

END

c MODULE USED BY LOOKER.
Chrkkkhkhkdkhkkkkhhkhkhhkkkhkkkkhkkkkhxhkkxkkk*kkkxk*
C FILE NAME ’SUB3.FOR’

C SUBROUTINE NAME ’XPANBX’.
C THIS ROUTINE ADDS THE PRESENT SEGMENT TO THE BOX

C IF NECESSARY, THE EXTREMITIES OF THE BOX ARE

C EXPANDED TO ENCLOSE THE NEW SEGMENT.
Chkkkhkhkhhdkkk ik kkk* kAR I Ak I I XK KIK IR KX K KA R K kK&K KKK

SUBROUTINE XPANBX
INCLUDE ’MAIN.PAR’
INCLUDE ’LOOKBX.CMN’
BSEG2 = BSEGI

BSEG1 = SEG
BOXTYP = O
BOXCNT = BOXCNT + 1

IF(SDIV .LT. DIV)DIV= SDIV

IF(SXLEFT .LT.BXLEFT) BXLEFT=SXLEFT
IF(SXRGHT .GT. BXRGHT)BXRGHT = SXRGHT
IF(SZLEFT .LT. BZMIN) BZMIN = SZLEFT
IF(SZRGHT .LT.B2MIN) BZMIN = SZRGHT

IF(SZLEFT .GT.BZMAX) BZMAX = SZLEFT
IF(SZRGHT .GT.BZMAX) BZMAX = SZRGHT
RETURN
END

c MODULE USED BY LOOKER.

Chikxkkkkhhhkrhikkhkihkhrkkkkkkkkkhktkkkxk

C FILE NAME ’SUBS5.FOR

C FUNCTION NAME 'ZINT’.

C THIS FUNCTION COMPUTES THE DEPTH OF THE SEGMENT

C BEING LOOKED AT, GIVEN AN XS COORDINATE AS ARGUMENT.
Ch¥kxdkxkhhhhhhkhkkxhhhhhkkkhkkkrkxkkkxkrkkkkhkk*

FUNCTION ZINT(X)
INCLUDE ’MAIN.PAR’
INCLUDE ’LOOKBX.CMN’
IF(SXRGHT.EQ.SXLEFT) GO TO 10
ZINT=SZLEFT+(SZRGHT-SZLEFT)* (X-SXLEFT)
1 / (SXRGHT-SXLEFT)
RETURN
10 ZINT = SZLEFT
RETURN
END

BIBLIOGRAPHY

Booth, K.S. (ed. and comp.): Tutorial: Computer
Graphics, The Institute of Electrical and Electronic
Engineers, Inc., New York, N.Y., 1979.

Codd, E.F. :"A Relational Model of Data for Large Data
Banks,"Communications of the ACk, VoL.13, ©No.6, 1970,
pp.377-387.

Codd, E.F:"Further Normalization of +the Data Base
Relational Model,"Data Base Systems,Courant Computer Science
Symposia Series, Vol.6, Prentice Hall, Englewood Cliffs,
N.J., 1972.

Codd,E.f.:"Relational Completeness of Data Base
Sublanguages ,"Da¥a Base Systems,Courant Computer Science
Symposia Series, Vol.6, Prentice Hall, Englewood Cliffs,
N.J., 1972.

Date, C.j.:An Introduction to Database
Systems,Addison-Wesley, 1977.

Comer, D.: "The Ubiquitous B-Tree,"ACM Computing
Surveys, Vol. 11, No. 2, June 1979.

Eastman, C.and Henrion, M.:"Glide-A Language for Design
Information Systems, Vol.2, Summer 1977.

Freeman, H. (ed. and comp.):Tutorial and Selected
Readings in Interactive Computer Graphics, The Institute of
Electrical and Electronic Engineers, Inc., New York, N.Y.,
1980.

Gries, D.E.:Compiler Construction f-r Digital
Computers, John Wiley and Sons, Inc., New York, 1971.

Hamlin, G. and Gear, C.W.:“Raster—scan Hidden Surface
Algorithm Techniques, "Computer Graphics, Vol.2, No.2,
Summer 1977.

Harms, E. and Zabinski, M.P.:Introduction to APL and
Computer Programming, John Wiley and Sons, Inc., New York,
9 L]

Kim, Won: "Relational Database Systems," ACM Computing
Surveys, Vol.11, No. 3, September 1979.

] Klinger, A.;Fu, K.S.;and Kunii, T.L.(ed.and comp.):Data
structures , Computer Graphics, and Pattern Recognition,
Academic Press, 1977.

Knuth, D.E.:The Art of Computer Programming Vol. 3z
Sorting and Searching, Addison-Wesley Publishing Co.,
Reading, Mass., 197, pp473-480. . ‘

Levy, L.:Discrete Structures of Computer Science, John
Wiley and Sons, Inc., New York, 1980.

Loiie, R.A. and Symonds, A.J.:"A .Relational Access
Method for interactive Applications, "Data Base Systems,
Courant Computer SCIENCE Symposia Series, Vol.6,
Prentice-Hall, Englewood Cliffs, N.J., 1972.

Meissner, L.P. and Organick, E.: "FORTRAN 77 -
Featuring Structured Programming," [Appendix I Summary of
ANSI Standard X39-1978 (FORTRAN 77)]. Addison-Wesley, 1980.

Newell, M.E.;Newell, R.g;and Sancha, T.L.:"A Solution
to the Hidden Surface Problem, "Proceedings, ACM National

Meetings, 1972.

Newman, W.M.: and Sproull, R.:Principles of Interactive
Computer Graphics, First Edition, Mecgraw-Hill, 1973.

Sutherland, I.E., Sproull, R.F., and Schumacker,
R.A.:"Sorting and the Hiddenen-surface Problem, "Proceeding
National Computer Conference 1973, AFIPS Press, pp685-693.

Tremblay, J.P. and Sorenson, P.G.:An Introduction to
Data Structures with Applications, MeGraw-Hill, Inc.,
U.S.A., 1976, ppb80O-4.

Weller, D. and Williams, R.: "Graphic and Relational
Data Base Support for Problem Solving,"Computer Graphics,
Vol. 10, No.2, Summer 1976.

Wimble, M.: "An APL Interpreter for Microcomputers:
Part 1," Byte, August 1977 [Part 2, September 1977, Part 3,
October 1977].

